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This paper describes a numerical method for the solution of a system of plasma
fluid equations. The fluid model is similar to those employed in the simulation of
high-density, low-pressure plasmas used in semiconductor processing. The governing
equations consist of a drift-diffusion model of the electrons, together with an inter-
nal energy equation, coupled via Poisson’s equation to a system of Euler equations
for each ion species augmented with electrostatic force, collisional, and source/sink
terms. The time integration of the full system is performed using an operator splitting
that conserves space charge and avoids dielectric relaxation timestep restrictions. The
integration of the individual ion species and electrons within the time-split advance-
ment is achieved using a second-order Godunov discretization of the hyperbolic
terms, modified to account for the significant role of the electric field in the prop-
agation of acoustic waves, combined with a backward Euler discretization of the
parabolic terms. Discrete boundary conditions are employed to accommodate the
plasma sheath boundary layer on underresolved grids. The algorithm is described
for the case of a single Cartesian grid as the first step toward an implementation on
a locally refined grid hierarchy in which the method presented here may be applied
on each refinement level. c© 1999 Academic Press
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1. INTRODUCTION

Many plasma phenomena can be predicted using mathematical models in which the
plasma is treated as a fluid comprised of charged species. One example is provided by
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models of industrial plasmas used in the manufacture of very large scale integrated (VLSI)
circuits. Inductively coupled plasma (ICP) reactors are one type of tool designed to satisfy
the demanding process requirements resulting from the desire to create increasingly smaller
device features on increasingly larger wafers. In spite of the low pressures employed in ICP
reactors, the numerical solution of systems of equations arising from fluid models of these
plasmas can be very effective in predicting some important aspects of their behavior, such
as the uniformity of the plasma across the wafer [13].

One of the challenges in the computational modeling of high-density, low-pressure pro-
cess plasmas is the presence of boundary layers, calledsheaths. As in other types of boundary
layer problems, there are two main ways to account for sheaths. One approach is to explic-
itly include a boundary layer expansion obtained from one-dimensional scaling analyses
normal to the boundary. These expansions are coupled to simulations of the bulk plasma by
enforcing compatibility conditions, such as continuity of fluxes and fields, at the boundary
separating the two models. The combination of sheath and bulk models is the standard
approach currently used in industrial plasma simulators.

A second generic method for handling boundary layers is the use of local grid refinement.
In this approach, fine grids are deployed in regions of high estimated error and/or solution
variation (e.g., the sheath) while coarser grids are used in the more quiescent regions (e.g., the
bulk plasma). The flexibility and gains in resolution provided by local mesh refinement are
further enhanced when combined with high-order discretization methods yielding smaller
discretization errors per grid cell than conventional first-order methods, thereby reducing
the amount of grid refinement needed to achieve a given level of accuracy. High-resolution
methods combining high-order discretization and local grid refinement have been extremely
successful in solving systems of equations arising from computational models of neutral
fluids, including those admitting viscous boundary layers.

The purpose of this paper is to begin the development and analysis of high-resolution
methods for the solution of a plasma fluid system representative of those describing the
high-density, low-pressure process plasmas mentioned above. In this first step, we consider
a model in which the plasma is regarded as a multicomponent fluid comprised of ions and
electrons, coupled by Poisson’s equation. The motion of the electrons is described by a
drift-diffusion model, together with an internal energy equation, while each ion species is
modeled using the classical Euler equations of gas dynamics augmented with electrostatic
force, collisional, and source/sink terms. We describe and analyze a discretization method
in which the plasma components are integrated in a time-split manner that conserves space
charge and avoidsdielectric relaxationtimestep restrictions. For the integration of the
individual ion species and electrons, a second-order Godunov discretization is applied to
the hyperbolic terms, with appropriate modifications made to account for the significant role
of the electric field in the propagation of acoustic waves. The parabolic terms are integrated
using backward Euler, although higher-order backward difference formulas could also be
used. Discrete boundary conditions are imposed in a manner consistent with the well-
known Bohm criterion for the minimum ion velocity at the sheath boundary, together with a
boundary condition on the electron flux designed to yield a self-consistent value, regardless
of whether or not the sheath is resolved.

In this discussion, we restrict our attention to the case of a single Cartesian grid, or by
a straightforward extension, an arbitrary union of Cartesian grids. As suggested above,
however, our ultimate goal is to incorporate a local mesh refinement strategy. One approach
to integrating a fluid system on block-structured locally refined grids is to regard the structure
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as a hierarchy of refinement levels, each of which is an arbitrary union of Cartesian grids
appropriately nested in the next coarser level. Time integration can then be performed on
a level-by-level basis, combined with synchronizations to enforce interlevel compatibility
conditions. A fundamental requirement in such an approach is an effective algorithm to
integrate the fluid system on a single refinement level, which is the topic of this paper.
The algorithmic issues arising even in this restricted context are sufficient to warrant their
specific consideration here, deferring the description of the algorithm on locally refined
grids to a subsequent article [4].

In Section 2, we present the physical model and the resulting system of equations to
be solved. Section 3 begins with a discussion of some essential model characteristics and
mathematical issues affecting the choice of discretization method. Each step of the time-
split integration method is then described in detail. Some numerical results illustrating the
computational complexity and convergence of the method are then presented in Section 4.

2. PLASMA FLUID MODEL

The governing equations for a plasma fluid model are based on Maxwell’s equations,
together with moments of the Boltzmann equations describing the transport of the ion
and electron components. Each plasma component is assumed to have a drifting, near-
Maxwellian velocity distribution. The infinite set of moment equations is truncated, and
the moments corresponding to the conservation of mass, momentum, and energy for each
component are retained. A detailed development can be found in [8]. In our model, each
ion speciesi is modeled by the system

∂ni

∂t
+∇ · (ni ui ) =

∑
j

Ri j , (2.1)

∂(mi ni ui )

∂t
+∇ · (mi ni ui ui )+∇(ni kTi )

= qi ni E −
∑

j

mi mj

mi +mj
ni νi j (ui − u j )+
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∑
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+
∑
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∑
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(
mj

2
u j · u j + E j

)
Ri j +

∑
j

εi j Si j , (2.3)

Ei = kTi

γi − 1
, (2.4)

whose variables are defined in Table I. The summation notation in the right-hand sides of
(2.2) and (2.3) denotes summation over all particle species (electron, ion, and neutral). The
equations (2.1)–(2.4) are the classical Euler equations for a polytropic ideal gas augmented
by electrostatic force, collisional, and gain/loss terms.

The electron equations are obtained from a moment system analogous to (2.1)–(2.4) with
a number of additional assumptions. First, we assume the drift-diffusion approximation for
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TABLE I

Variables Used in the Plasma Fluid Model

nj Number density
uj Velocity
φ potential
E Electric field
Tj Temperature
E j Internal energy
γ j Ratio of specific heats
Pind Input power density
µ, η Transport coefficients
mj Mass
Ri j Number density gain/loss rates from ionization, attachment, etc.
Si j Number density gain/loss rates from inelastic collisions
εej Energy transferred in inelastic collisions
νi j Elastic collision frequencies
qj Charge
e Elementary charge
ε0 Permittivity of free space
k Boltzmann’s constant

the electron directed velocity. This approximation is sometimes referred to as the zero mass
approximation, but actually it is just the elimination of inertial terms that are negligible,
provided that the electron plasma oscillations are not resolved. The result is the replacement
of the electron momentum equation with an equation of state for the electron flux determined
from a balance of forces. The system of electron equations we consider is, therefore,

∂ne

∂t
+∇ · (neue) =

∑
j

Rej, (2.5)

neue = −µneE − η∇(nekTe), (2.6)

∂
(

3
2nekTe

)
∂t

+∇ ·
(

ne
5

2
kTeue

)
= −eneue · E +∇ ·

(
5η

2
nekTe∇kTe

)
+ Pind−

∑
j

3me

mj
kTeνejne+

∑
j

εej Sej, (2.7)

where

νen ≡
∑

j

νej, (2.8)

µ ≡ e/meνen, (2.9)

η ≡ 1/meνen (2.10)

and the remaining variables are defined in Table I. Equation (2.7) for the electron internal
energy density,32nekTe, is obtained by combining (2.5) and (2.6) with the equation for the
total electron energy. The remaining approximations made in (2.5)–(2.8) are based on the
low electron mass and (assumed) high electron temperature, relative to those of the other
particle species.
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The coupling of external power to the plasma is via the deposition source termPind in the
electron energy equation (2.7). We assume that this source term is knowna priori rather than
include a full electromagnetic model. For ICP applications, the high thermal conductivity of
the plasma, along with the skin depth-limited penetration of electromagnetic fields, makes
the decoupling of the source and plasma a reasonable approximation, provided the region
of interest is more than a few skin depths away from the coils (typically a few centimeters).
With this simplification and the absence of external magnets, we may neglect magnetic
fields. The electromagnetic behavior is then simply described by Poisson’s equation

ε0∇ · E =
∑

i

qi ni + qene, E = −∇φ. (2.11)

Boundary conditions for the system (2.1)–(2.11) will be specified in Section 3.3 in the
context of our numerical discretization.

3. NUMERICAL ALGORITHM

3.1. Motivation

Before describing our numerical algorithm, we consider the plasma characteristics and
mathematical issues that affect the discretization.

The slow motion of the ions, relative to the electrons, allows some flexibility in the manner
in which they are advanced. We do, however, want to retain high spatial accuracy. Regarding
the right-hand sides as source terms, (2.1)–(2.4) are the inhomogeneous Euler equations
of gas dynamics. The mathematical properties of such equations are well understood for a
neutral gas for which effective high-order numerical methods have been developed [3].

As part of the plasma fluid system, the ion equations differ from those describing a neutral
gas in at least one important respect, however. Derivations of the dispersion relations for
positive ion acoustic waves (e.g., [2]) reveal that the second term in the right-hand side of
(2.2), involving the fieldE, makes a significant contribution to the plasma sound speed if
TeÀ Ti . Specifically, it is seen that small-amplitude, low-frequency waves propagate with
speed

√
(kTe+ γi kTi )/mi rather than the neutral sound speed

√
γi kTi /mi . This is even

more evident in the case of ambipolar flow [2] for which

E = µi kTi − µekTe

e(µi + µe)

∇ni

ni
≈ −kTe

e

∇ni

ni
(3.12)

(assuming that the electron mobilityµe≡ e/meνen dominates the ion mobilityµi ≡
e/mi νin), which implies that the second term in the right-hand side of (2.2), containing
the field E, dominates the ion pressure gradient. This important fact must therefore be
included in the hyperbolic discretization. We accomplish this by explicitly incorporating
the plasma sound speed in the left-hand side of the equations for the positive ion species
with a corresponding modification of the source terms. In convective form, the positive ion
momentum equations then become

ni
Dui

Dt
+ γi kTi + kTe

mi
∇ni = Si , (3.13)
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where

Dui

Dt
≡ ∂ui

∂t
+ (ui · ∇)ui , (3.14)

Si ≡ kTe

mi
∇ni + qi ni

mi
E−

∑
j

mj ni νi j

mi +mj
(ui −u j )+

∑
j |Ri j<0

ui Ri j +
∑

j |Ri j>0

u j Ri j . (3.15)

For electropositive systems (i.e., all ion species are positive), we employ the rearrangement
(3.13) for each ion species. For electronegative systems (i.e., plasmas with at least one
negative ion species) we retain the original form of (2.2) for each negative ion species and
replace (3.13) for each positive ion species by

ni
Dui

Dt
+ γi kTi + βkTe

mi
∇ni = Si , (3.16)

Si ≡ βkTe

mi
∇ni + qi ni

mi
E −

∑
j

mj ni νi j

mi +mj
(ui − u j )+

∑
j |Ri j<0

ui Ri j +
∑

j |Ri j>0

u j Ri j , (3.17)

where, lettingN denote the set of indices corresponding to the negative ion species,

β ≡ 1+∑i∈N αi

1+∑i∈N αi
Te
Ti

, αi ≡ ni

ne
. (3.18)

The use of the factorβ to modify the Bohm criterion for sheath formation in the presence
of negative ion species is described in Section 6.4 of [11]. We have employed a similar
argument here to reduce the electronegative plasma sound speed.

The ion energy equations (2.3) are modified in a manner consistent with the corresponding
momentum equations. The complete system is given in Section 3.2.1 below.

The rearrangement (3.13) was performed to introduce explicitly the correct plasma sound
speed (as indicated by a linear analysis) in the left-hand side of the fluid system, allowing
the right-hand side to be treated as a lagged source term in an explicit integration of the full
nonlinear system. We now show that the momentum source (3.15) does in fact vary slowly,
relative to the plasma sound speed time scale. In this analysis, we consider a single, positive
ion species and assume that the electron temperatureTe is constant. We also neglect the
contribution of the gain/loss terms to the momentum source. To begin, we use the electron
drift-diffusion equation (2.6) to rewrite the source as

Si = kTe

mi
∇ni + eni

mi
E − νinni ui − 1

mi
(meνenneue+ eneE + kTe∇ne) (3.19)

= kTe

mi
∇(ni − ne)+ e

mi
E(ni − ne)− νinni ui − me

mi
νenneue. (3.20)

To facilitate the estimation of the relative sizes of these terms, we apply several scalings. Let
n0 denote the number density of the neutral background, and letσi denote the ion collision
cross section corresponding toνin, i.e.,

νin = σi n0

(
kTi

mi

)1/2

. (3.21)
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Let

φ′ ≡ eφ

kTe
, (3.22)

u0 ≡
(

kTe

mi

)1/2

, (3.23)

u′i ≡
ui

u0
, u′e ≡

ue

u0
, (3.24)

n′i ≡
ni

n0
, n′e ≡

ne

n0
, (3.25)

λ ≡ 1

n0σi
, (3.26)

x′ ≡ x

λ
, (3.27)

t ′ ≡ t
u0

λ
. (3.28)

The application of (3.22)–(3.28) yields

n′i
Du′i
Dt ′
+
(

1+ Ti

Te

)
∇′n′i = ∇′(n′i − n′e)+ (n′e− n′i )∇′φ′ −

me

mi
ν ′enn

′
eu
′
e− ν ′inn′i u

′
i , (3.29)

where∇′ denotes the gradient with respect to the scaled spatial variablex′ and theν ′xn are
the scaled collision frequencies. Using (3.21), we have in particular that

ν ′in ≡ νin
λ

u0
=
(

Ti

Te

)1/2

(3.30)

and, using a similar expression for the electron collision frequency [12],

ν ′en ≡ νen
λ

u0
= σen0

(
kTe

me

)1/2
λ

u0
= σe

σi

(
mi

me

)1/2

. (3.31)

Hence, we have

n′i
Du′i
Dt ′
+
(

1+ Ti

Te

)
∇′n′i

= ∇′(n′i − n′e)+ (n′e− n′i )∇′φ′ −
σe

σi

(
me

mi

)1/2

n′eu
′
e−

(
Ti

Te

)1/2

n′i u
′
i . (3.32)

Although the neutral collision frequencies for the ions and electrons typically differ by a
couple orders of magnitude, this is primarily due to the relative difference in their thermal
speeds rather than their collision cross sectionsσe andσi (e.g., see Table II), which we
therefore regard as comparable in this analysis.

The scaling (3.22)–(3.28) has effectively normalized wave velocities in (3.32) since the
scaled sound speed

√
1+ Ti /Te is approximately unity, assumingTeÀ Ti . To see that the

right-hand side does not contain small (relative to unity) time scales, we next show that
the spatially differentiated (i.e., the first and second) terms in the right-hand side of (3.32)
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TABLE II

Sample Physical Data

Electrons

me 9.1× 10−31 kg
kTe 3.2× 10−19 joules
σe 1.2× 10−19 m2

Ions (Argon)

mi 6.6× 10−26 kg
kTi 8.0× 10−21 joules
σi 8.0× 10−19 m2

Neutral background

n0 1021 m−3

are in fact small and slowly varying, and that the third and fourth terms are bounded damping
terms.

Differentiation of Poisson’s equation (2.11) with respect to time and use of the ion and
electron continuity equations yields

ε0

e

∂

∂t
∇2φ = −∇ · (neue)+∇ · (ni ui ). (3.33)

Inserting the drift-diffusion electron flux and applying the scalings (3.22)–(3.28), we obtain

ε
∂

∂t ′
∇′2φ′ = −∇′ ·

(
n′e
ν ′en

∇′φ′ − 1

ν ′en

∇′n′e
)
+ me

mi
∇′ · (n′i u′i ), (3.34)

where

ε ≡ meε0

e2n0

u2
0

λ2
(3.35)

is the squared reciprocal of the scaled plasma frequency computed with the neutral density.
Takingε as an asymptotic parameter tending to zero(ε= 9.8× 10−13 for the data in Table II),
we expandφ′ in ε as

φ′ =
∞∑

i=0

ε iφ′i (3.36)

and substitute into (3.34). Equating the coefficients of like powers ofε, the zeroth-order
terms yield that

1

ν ′en

∇′ · (n′e∇′φ′0−∇′n′e) =
me

mi
∇′ · (n′i u′i ), (3.37)

and the first-order relation is

∂

∂t ′
∇′2φ′0 = −

1

ν ′en

∇′ · (n′e∇′φ′1). (3.38)
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Using the scaled Poisson equation, we therefore have that

n′e− n′i = ε
mi

me
∇′2φ′ = O

(
ε

mi

me

)
asε → 0 (3.39)

and, using (3.31) and (3.38),

∂

∂t ′
(n′e− n′i ) = ε

mi

me

∂

∂t ′
∇′2φ′0+ O

(
ε2 mi

me

)
asε → 0

= −ε mi

meν ′en

∇′ · (n′e∇′φ′1)+ O

(
ε2 mi

me

)
asε → 0 (3.40)

= O

(
ε

(
mi

me

)1/2
)

asε → 0.

This implies that the first and second terms in the right-hand side of (3.29) are small, as
well as their rate of change.

From (3.37), we obtain that the divergence of the ion and electron fluxes are comparable
to leading order inε. In one spatial dimension, it then follows by integration that the fluxes
themselves are comparable. This implies that, like the fourth term, the third term in the right-
hand side of (3.29) is simply a nondifferentiated damping term. More generally, we may
only deduce the compatibility of fluxes integrated over the boundaries of spatial subregions.
There is nothing to prevent, for example, a situation in which the ion flux has components
only in thex-direction and the electron flux has components solely in they-direction. In
any case, since(

me

mi

)1/2

n′eu
′
e =

(
mi

me

)1/2 1

ν ′en

(n′e∇′φ′0−∇′n′e)+ O(ε) asε → 0 (3.41)

= O(1) asε → 0, (3.42)

the electron flux term in the right-hand side of (3.29) is, at worst, a bounded, nondifferen-
tiated source term.

The scaling analysis employed above has another important implication for numerical
discretization. Consider the temporal discretization of (3.34) (dropping primes)

ε∇2

(
φn+1− φn

1t

)
= −∇ ·

(
ne

νen
∇(αφn+ (1−α)φn+1)− 1

νen
∇ne

)
+ me

mi
∇ · (ni ui ),

(3.43)

whereφn andφn+1 are the old and new time potentials, respectively, and1t is the time
step. The parameterα is a to-be-determined weight, and the remaining discretizations are
not important. Rearranging terms, we obtain

∇ ·
[(

1+ (1− α)1tne

ενen

)
∇φn+1

]
= ∇ ·

[(
1− α1tne

ενen

)
∇φn

]
+ other terms. (3.44)

Since stability requires that

α1t <
ενen

ne
= O

(
ε

(
mi

me

)1/2
)

asε → 0, (3.45)
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a severe timestep restriction results unlessα=O(ε
√

mi /me). In other words, the potential
in the electron drift flux term must be treated implicitly. The necessity for maintaining a tight
coupling of the electron drift flux and the evolution of Poisson’s equation to avoiddielectric
relaxation timestep limitations has also been recognized in other numerical approaches
[1, 9, 13].

3.2. Time-Split Integration Algorithm

We employ a conservative spatial differencing that begins with the cell averaging of each
of the continuous equations on an underlying uniform grid. The divergence operator then
becomes a surface integral operator,

∇ · F ≡ 1

1x1y

∮
F · dS.

For the remainder of this section the dependent variables will represent cell averages, and
the usual differential notation for the divergence operator (with the above interpretation) is
retained for convenience.

Assume that we have known values for all quantities at timetn and that we wish to
integrate (2.5)–(2.11) to a new timetn+1= tn+1t . The integration is split into five main
steps:

1. Apply a second-order Godunov method to integrate the ion equations using lagged
(i.e., evaluated at timetn) sources.

2. Use a second-order Godunov method to predict time-centered electron densities at
cell edges, based on the lagged electron drift velocity and diffusive flux. Implicitly solve
the electron continuity equation for a prediction of the cell-centered electron density at time
tn+1 and use it to compute an updated diffusive flux.

3. Solve a modified Poisson equation for the potential at the new timetn+1. Use the
resulting new electric field to update the electron density and flux.

4. Using the new electric field, electron density, and electron flux, combine a second-
order Godunov advection with an implicit treatment of the diffusive terms to integrate the
electron internal energy equation.

5. Use the new time data computed in the preceding steps to compute more accurate ion
source terms and update the ion density and fluxes at timetn+1.

We describe each of these five steps in detail in Subsections 3.2.1 through 3.2.5, respectively.
The selection of the timestep1t is described in Section 3.4.

3.2.1. Step 1 (Ion equation integration).To perform the ion integration, we notice that
the system of Eqs. (2.1)–(2.4) for each ion species can be written as a single vector equation

∂U

∂t
+ ∂

∂x
F(U )+ ∂

∂y
G(U ) = H(U, E), (3.46)

where we have the definitions:

U ≡


ni

0x

0y

1
2 ui · ui + Ei /mi

 , 0x ≡ ni uix , 0y ≡ ni uiy, (3.47)
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c2 ≡ γi kTi + kTe

mi
, (3.48)

F(U ) ≡



0x

02
x

ni
+ c2ni

0x0y

ni(
1
2 ui · ui + Ei /mi + c2

)
0x

 , G(U ) ≡



0y

0x0y

ni

02
y

ni
+ c2ni(

1
2 ui · ui + Ei /mi + c2

)
0y

 ,
(3.49)

H(U, E) ≡ 1

mi


S0

kTe
∂ni
∂x + qi ni Ex + S1x

kTe
∂ni
∂y + qi ni Ey + S1y

∇ · (ni kTeui )+ qi ni ui · E + S2

, (3.50)

whereS0, S1, andS2 denote the collisional and gain/loss terms in the right-hand sides of
(2.1)–(2.3). As described in Section 3.1, the above system is modified for electronegative
plasmas as

c2 ≡
{
(γi kTi + βkTe)/mi , if qi > 0,

kTi /mi , if qi < 0,
(3.51)

H(U, E) ≡ 1

mi


S0

βkTe
∂ni
∂x + qi ni Ex + S1x

βkTe
∂ni
∂y + qi ni Ey + S1y

∇ · (niβkTeui )+ qi ni ui · E + S2

, if qi > 0, (3.52)

or

H(U, E) ≡ 1

mi


S0

qi ni Ex + S1x

qi ni Ey + S1y

qi ni ui · E + S2

, if qi < 0, (3.53)

whereβ is defined by (3.18). We use a second-order, unsplit Godunov method [3] to solve
this system.

THE GODUNOV PROCEDURE. To cell average (3.46) we apply to each term

1

1t1x1y

∫ tn+1

tn

dt
∫ xi+1/2

xi−1/2

dx
∫ yj+1/2

yj−1/2

dy. (3.54)

The first term in (3.46) becomes

Un+1
i, j −Un

i, j

1t
,
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FIG. 1. Calculation of left and right states for Riemann problems for edges normal to thex direction. Arrows
indicate position for state predictions relative to base of Taylor expansion.

whereUn
i, j is a vector quantity representing the average value in cell(i, j ) at timetn, of the

pointwise vector quantityu.
The second and third terms represent time-averaged flux values through cell faces within

a timestep. These flux values are obtained by evaluating the flux functionsF(U ) andG(U )
using the solution of local Riemann problems at the cell interfaces (as in [10]). The states
used to calculate the Riemann solution are detailed below, but it is important to point out
that, rather than using cell-centered values from the previous timestep for these states, we
use Taylor series expansions in time and space about the cell-centered values for higher
accuracy. These edge state values are depicted in Fig. 1 for the case of edges normal to thex
direction. Using these states increases the spatial and temporal accuracy to second-order (at
least in the case of linear advection). If we represent these Riemann solutions byŨ n

i±1/2, j

andŨ n
i, j±1/2, the second and third terms can be written as

1

1x

[
F
(
Ũ n

i+1/2, j

)− F
(
Ũ n

i−1/2, j

)]
,

1

1y

[
G
(
Ũ n

i, j+1/2

)− G
(
Ũ n

i, j−1/2

)]
.

The discrete source term is calculated in two steps. First, the values of the state variables
at tn are used to calculate a provisional updateU ∗ n+1

i, j at timetn+1. The update is recalcu-
lated using this value for the source termH(U ∗ n+1

i, j , En+1). In this way, a more accurate
description of the source evolution during the step is obtained. This gives for the fourth
term

1

2

[
H
(
Un

i, j , En
)+ H

(
U ∗ n+1

i, j , En+1
)]
.

Rearranging gives the update scheme for the cell averages,

Un+1
i, j = Un

i, j −
1t

1x

[
F
(
Ũ n

i+1/2, j

)− F
(
Ũ n

i−1/2, j

)]− 1t

1y

[
G
(
Ũ n

i, j+1/2

)− G
(
Ũ n

i, j−1/2

)]
+ 1t

2

[
H
(
Un

i, j , En
)+ H

(
U ∗ n+1

i, j , En+1
)]
. (3.55)

THE RIEMANN SOLVER. Central to the Godunov algorithm is the solution of Riemann
problems at cell edges. Because the system of equations describing each ion species is
essentially the Euler equations of ordinary gas dynamics with a modified sound speed (due
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to the rearrangement (3.13)) and source terms, approximate Riemann problem solutions
can be obtained in the same manner as for a neutral gas [10].

The Riemann solver returns a solution at a cell edge, given the states on both sides. The
solver decomposes the jump into wave components and determines from the wave speeds
the solution at the interface during the timestep. This Riemann solution is then used to
evaluate the flux functionsF andG in (3.46). The solver is locally one-dimensional in that
the transverse behavior is included only as a source term in the calculation of the left and
right states. The term unsplit is in contrast to methods using Strang splitting [14]. Rather
than alternating between directions on subsequent steps, as in a split method, each edge
(normal tox or y) is treated independently and on an equal footing during each step.

HALF-STEPPREDICTIONS. In order to calculate the edge fluxes, a Riemann problem must
be solved at each cell edge. If lagged cell-centered data is used as input to the Riemann
solver, the method is first order (in the case of linear advection). Higher order interpolation
in space alone can be used. However, this requires twice as many Riemann solves for
comparable accuracy [10].

The approach we have chosen is to Taylor-expand in space and time about the cell-
centered value attn to get a better approximation to the edge states attn+1/2. This allows the
Riemann solves to be done, operationally, as in the first-order case, but with second-order
accuracy (this can be shown analytically for the case of linear advection and computationally
for Burgers’ equation). The difference is that we are using more accurate (spatially and
temporally) values for the left and right states in the Riemann solve.

So, the left and right state values for the edge-bordering cells(i, j )and(i + 1, j ), depicted
in Fig. 1, and the bottom and top states for the edge bordering cells(i, j )and(i, j + 1)will be

Un+1/2
i+1/2, j

∣∣L = Un
i, j +

1t

2

∂U

∂t

∣∣∣∣n
i, j

+ 1x

2

∂U

∂x

∣∣∣∣n
i, j

,

Un+1/2
i+1/2, j

∣∣R = Un
i+1, j +

1t

2

∂U

∂t

∣∣∣∣n
i+1, j

− 1x

2

∂U

∂x

∣∣∣∣n
i+1, j

,

(3.56)

Un+1/2
i, j+1/2

∣∣B = Un
i, j +

1t

2

∂U

∂t

∣∣∣∣n
i, j

+ 1y

2

∂U

∂y

∣∣∣∣n
i, j

,

Un+1/2
i, j+1/2

∣∣T = Un
i, j+1+

1t

2

∂U

∂t

∣∣∣∣n
i, j+1

− 1y

2

∂U

∂y

∣∣∣∣n
i, j+1

.

The time derivatives are then replaced with spatial derivatives using the conservation law
(3.46) in quasi-linear form to obtain

Un+1/2
i+1/2, j

∣∣L = Un
i, j +

1x

2

∂U

∂x

[
I − 1t

1x
∂F

]∣∣∣∣n
i, j

− 1t

2
Gy

∣∣∣∣n
i, j

+ 1t

2
H

∣∣∣∣n
i, j

,

Un+1/2
i+1/2, j

∣∣R = Un
i+1, j −

1x

2

∂U

∂x

[
I + 1t

1x
∂F

]∣∣∣∣n
i+1, j

− 1t

2
Gy

∣∣∣∣n
i+1, j

+ 1t

2
H

∣∣∣∣n
i+1, j

,

(3.57)

Un+1/2
i, j+1/2

∣∣B = Un
i, j +

1y

2

∂U

∂y

[
I − 1t

1y
∂G

]∣∣∣∣n
i, j

− 1t

2
Fx

∣∣∣∣n
i, j

+ 1t

2
H

∣∣∣∣n
i, j

,

Un+1/2
i, j+1/2

∣∣T = Un
i, j+1−

1y

2

∂U

∂y

[
I + 1t

1y
∂G

]∣∣∣∣n
i, j+1

− 1t

2
Fx

∣∣∣∣n
i, j+1

+ 1t

2
H

∣∣∣∣n
i, j+1

,

where∂F and∂G are the Jacobians of the flux functionsF andG, respectively.
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SLOPELIMITING AND CHARACTERISTICPROJECTION. We further modify the state pre-
dictions (3.57) to enhance stability. We first want to use slope limiting to prevent oscillations
that could feed into nonlinear instabilities. Second, we wish to take advantage of local char-
acteristic information and remove portions of the Taylor series expansion that do not come
from the “upwind” direction. The first of these objectives is accomplished through the
use of the van Leer slope-limiting operator, denotedSL. The upwinding is done with two
projection operatorsP+ andP− as described in [5].

Including the slope limiting and characteristic projection operators, we have our final
representation of the left/right and top/bottom state values used for the Riemann solution,

Un+1/2
i+1/2, j

∣∣L = Un
i, j +

1x

2
P+

{
SL

(
∂U

∂x

)[
I − 1t

1x
∂F

]}∣∣∣∣n
i, j

− 1t

2
Gy

∣∣∣∣n
i, j

+ 1t

2
H

∣∣∣∣n
i, j

,

Un+1/2
i+1/2, j

∣∣R = Un
i+1, j −

1x

2
P−

{
SL

(
∂U

∂x

)[
I + 1t

1x
∂F

]}∣∣∣∣n
i+1, j

− 1t

2
Gy

∣∣∣∣n
i+1, j

+ 1t

2
H

∣∣∣∣n
i+1, j

,

(3.58)

Un+1/2
i, j+1/2

∣∣B = Un
i, j +

1y

2
P+

{
SL

(
∂U

∂y

)[
I − 1t

1y
∂G

]}∣∣∣∣n
i, j

− 1t

2
Fx

∣∣∣∣n
i, j

+ 1t

2
H

∣∣∣∣n
i, j

,

Un+1/2
i, j+1/2

∣∣T = Un
i, j+1−

1y

2
P−

{
SL

(
∂U

∂y

)[
I + 1t

1y
∂G

]}∣∣∣∣n
i, j+1

− 1t

2
Fx

∣∣∣∣n
i, j+1

+ 1t

2
H

∣∣∣∣n
i, j+1

.

TWO-PASS FLUX CALCULATION . To calculate the state predictions (3.58), the cell-
centered transverse fluxes must be known. For example, the prediction of the left state
requiresGy|ni, j . To approximate these transverse flux terms, a two-pass scheme is used. In
the first pass, the transverse flux terms are approximated by considering a set of homoge-
neous equations. We calculate the fluxes associated with the conservation laws,

∂U

∂t
+ ∂

∂x
F(U ) = 0,

∂U

∂t
+ ∂

∂y
G(U ) = 0.

We will then be able to approximateGy|ni, j andFx|ni, j as

Fx|ni, j ≈
1

1x

(
F
(
Ũ n

i+1/2, j

)− F
(
Ũ n

i−1/2, j

))
,

Gy|ni, j ≈
1

1y

(
G
(
Ũ n

i, j+1/2

)− G
(
Ũ n

i, j−1/2

))
.

With these transverse values, we can then calculate the state predictions in (3.58) in a second
pass.
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3.2.2. Step 2 (Electron diffusive flux calculation).To begin the electron advance, we
substitute (2.6) into (2.5) to obtain

∂ne

∂t
= −∇ · (neūe)+∇ · η∇(nekTe)+

∑
j

Rej, (3.59)

whereūe≡−µE is the electron drift velocity. We calculate a slope-limited, Taylor-series
prediction of the edge electron densitynn+1/2

e at tn+1/2≡ (tn+ tn+1)/2 upwinded relative
to the lagged drift velocitȳun

e. Specifically, on cell edges parallel to they-axis,

ne|n+1/2
i+1/2, j =

ne|ni, j + 1t
2
∂ne
∂t

∣∣n
i, j + 1x

2
∂ne
∂x

∣∣n
i, j for ūe|ni+1/2, j > 0,

ne|ni+1, j + 1t
2
∂ne
∂t

∣∣n
i+1, j − 1x

2
∂ne
∂x

∣∣n
i+1, j for ūe|ni+1/2, j ≤ 0,

(3.60)

and similarly for the cell edges parallel to thex-axis. As for the ion equations, the temporal
derivatives in (3.60) are replaced using the quasi-linear form of (3.59) and the spatial
derivative∂ne/∂x, which is slope limited.

Using the half-step predictionnn+1/2
e in the electron drift flux term, we then discretize

(3.59) as

n̂n+1
e − nn

e

1t
= −∇ · (nn+1/2

e ūn
e

)+∇ · ηn∇(n̂n+1
e kTn

e

)+∑
j

Rn
ej. (3.61)

Collecting terms involvinĝnn+1
e on the left-hand side yields a symmetric, positive definite

linear system that can be solved for this quantity. The densityn̂n+1
e is merely a prediction

of the electron density at timetn+1 that we employ to compute the electron diffusive flux

0n+1
diff ≡ −ηn∇(n̂n+1

e kTn
e

)
. (3.62)

3.2.3. Step 3 (Coupled potential and electron integration).Using the electron diffusive
flux 0n+1

diff and the electron densitiesnn+1/2
e , we are ready to advance the potential and

compute the final electron density at timetn+1. As shown at the end of Section 3.1, the
electron drift flux represents a stiff term that must be treated implicitly. As in (3.43), we
difference (2.11) in time to obtain

ε0

e

∇2φn+1−∇2φn

1t
= nn+1

e − nn
e

1t
−
∑

i

qi

e

nn+1
i − nn

i

1t
; (3.63)

then we use the continuity equation to replace the first term on the right-hand side by

nn+1
e − nn

e

1t
= −∇ · 0n+1

e +
∑

j

Rn
ej, (3.64)

where

0n+1
e ≡ µnnn+1/2

e ∇φn+1+ 0n+1
diff . (3.65)

Using the discrete ion continuity equations in the second term on the right-hand side of
(3.63), collecting all terms involvingφn+1 on the left-hand side, and using Poisson’s equation
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at the old time, we obtain

∇ ·
[(
ε0

e
+µn1tnn+1/2

e

)
∇φn+1

]
= nn

e−
∑

i

qi

e
nn

i +1t∇ ·
(∑

i

qi

e
(ni ui )

n+1/2−0n+1
diff

)
.

(3.66)

Here, we have also used the fact that the gain/loss termsRn
ej, Rn

i j yield zero net charge, i.e.,

∑
j

(
qeRn

ej +
∑

i

qi R
n
i j

)
= 0. (3.67)

Equation (3.66), together with boundary conditions, is a symmetric linear system that can
be solved forφn+1. The final electron flux is then computed from (3.65),nn+1

e is obtained
from (3.64), and the new field is given by

En+1 ≡ −∇φn+1. (3.68)

3.2.4. Step 4 (Electron internal energy equation integration).We discretize (2.7) as

3

2

nn+1
e kTn+1

e − nn
ekTn

e

1t
+∇ ·

(
5

2
0n+1

e kTn+1/2
e

)
= −e0n+1

e · En+1+ 5

2
∇ · (ηnnn+1/2

e kTn+1/2
e ∇kTn+1

e

)
+ Pn

ind−
∑

j

3me

mj
kTn

e ν
n
ejn

n
e +

∑
j

εn
ej S

n
ej, (3.69)

whereTn+1/2
e is a slope-limited, Taylor-series prediction of the edge temperature attn+1/2

upwinded relative to the velocityun
e (similarly to (3.60)). Collecting all terms involving

Tn+1
e on the left-hand side, we obtain, together with boundary conditions, a symmetric,

positive definite linear system that can be solved for this quantity.

3.2.5. Step 5 (Ion data update).At this point, all that remains is the final update of the
ion data. To do this, we must evaluate the source termH(U, E) in Eq. (3.46). At the start
of the timestep we have the data

U = Un ≡


nn

i

nn
i un

ix

nn
i un

iy
1
2un

i · un
i + En

i

/
mi

 , E = En. (3.70)

At the end of Step 3, we have provisional values for the ion data and final values for the
field

U = Û n+1 ≡


n̂n+1

i

n̂n+1
i ûn+1

i x

n̂n+1
i ûn+1

iy

1
2ûn+1

i · ûn+1
i + Ên+1

i

/
mi

 , E = En+1. (3.71)
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We then average the source term evaluated with these two states. This is much like Heun’s
method [6] and is second-order accurate in time. With this source term we can calculate the
new solution of the conservation law (3.46),

Un+1 = Un − 1t

1x

[
F
(
Ũ n+1/2

R

)− F
(
Ũ n+1/2

L

)]− 1t

1y

[
G
(
Ũ n+1/2

T

)− G
(
Ũ n+1/2

B

)]
+ 1t

2
[H(Un, En)+ H(Û n+1, En+1)], (3.72)

whereŨ n+1/2
R , Ũ n+1/2

L , Ũ n+1/2
T , andŨ n+1/2

B are Riemann solutions used to evaluate the
time-centered fluxes on the right, left, top, and bottom cell edges, respectively.

3.3. Boundary Conditions

Boundary conditions for the discrete ion equations are applied in the solution of the
Riemann problems at boundary cell edges. The Riemann problem solutions give the non-
linear equivalent of upwind solutions that are used to evaluate the flux functionsF andG
in (3.46). On each interior cell edge, predictions made from both sides of the edge define
the initial conditions for the Riemann problem. At cell edges on the problem boundary, we
assume that for positive ion species the prediction coming from the interior of the domain
is the solution to the Riemann problem. This is equivalent to assuming that the ions are
flowing outward at a speed greater than the ion acoustic speedc defined by (3.48), which
is consistent with the well-known Bohm sheath criterion [2]. For positive ion species in
an electronegative system, the use of interior predictions at the boundary is also consistent
with modified Bohm criterion as described in [11] due to our inclusion of the factorβ

given by (3.18) in the definition of the reduced plasma sound speed used for the hyperbolic
integration. For negative ion species, we assume a zero flux boundary condition.

For Poisson’s equation, Dirichlet boundary conditions are imposed on the potentialφ

corresponding to an applied voltageφb at the boundary. The applied voltageφb can vary
spatially along the boundary and with each time step. In the simulation of ICP reactors, for
example, radio-frequency (rf) biasing can be included by specifying a sinusoidally varying
potential along a portion of the boundary.

The specification of boundary conditions for the discrete electron equations requires a
boundary condition for the electron fluxneue. Consider a spatial cell with an edge on the
problem boundary. Let0b denote the outward normal component ofneue at the center of
the boundary edge, and letφb denote the applied voltage there. Letφ, ne, andTe denote the
potential, electron number density, and electron temperature at the cell center, respectively.
Of all the electrons at the cell center, only those moving toward the boundary with kinetic
energies greater thane|φb−φ| can overcome the potential barrier. Using a Maxwellian
distribution

f (w) =
(

me

2πkTe

)1/2

exp

(−mew
2

2kTe

)
, (3.73)

we therefore propose that

0b = new̄e(kTe, φ), (3.74)
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wherew̄e is the average velocity of electrons reaching the boundary; i.e.,

w̄e(kTe, φ) ≡
∫ ∞
(2e|φb−φ|/me)1/2

w f (w) dw

=
√

kTe

2πme
exp

(
−e|φb − φ|

kTe

)

= v̄(kTe)

4
exp

(
−e|φb − φ|

kTe

)
, (3.75)

wherev̄(kTe)=
√

8kTe/πme is the average speed for a Maxwellian distribution. Letnn+1/2
e

again denote the Taylor-series-predicted density at the boundary. We can then require that
at the problem boundary

nn+1/2
e ūn+1

e − ηn∇(n̂n+1
e kTn

e

) = nn+1/2
e w̄e

(
kTn

e , φ
n+1
)
. (3.76)

This relation for the total flux at the boundary does not give the drift and diffusive flux
components separately. Moreover, it depends upon the potential, which we are treating
implicitly. This requires a modification of (3.66) to include the total electron flux, not just
the drift component, on the left-hand side. Specifically, we replace (3.66) by

∇ ·
[
ε0

e
∇φn+1+1t F(φn+1)

]
= nn

e −
∑

i

qi

e
nn

i +1t∇ ·
(∑

i
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e
(ni ui )

n+1/2− 0n+1
diff

)
,

(3.77)

where

F(φn+1) ≡
{

nn+1/2
e µn∇φn+1 on interior cell edges,

nn+1/2
e w̄e

(
kTn

e , φ
n+1
)

on boundary cell edges.
(3.78)

Here, we assume that0n+1
diff = 0 on boundary cell edges, which also implies the use of

homogeneous Neumann boundary conditions in the solution of the linear system in (3.61).
Since the exponential nonlinearity introduced by the electron flux boundary condition (3.76)
in (3.77) affects only boundary edges, (3.77) is readily solved using Newton iteration with
a symmetric Jacobian.

The solution of the linear system implied by (3.69) requires a boundary condition for the
total energy flux,Qb. The total energy is calculated by arguments similar to those used in
obtaining (3.74). A derivation for the total energy flux is shown in [11] and is given by

Qb = 5

2
nekTeue− 5η

2
nekTe∇kTe = 2kTe0b. (3.79)

Although we have specified boundary conditions independently for the ion species and
electrons, a coupling of boundary fluxes will occur if secondary electron emission is in-
cluded. In our time-split integration algorithm, after each of the ion species has been ad-
vanced over the timestep, the inward flux of emitted electrons can be computed as a sum
of terms, each of which is the product of ion flux (for the outward flowing species) times
an emission coefficient depending on the ion species and boundary material. The emission
flux computed in this way can then be subtracted from (3.74), which simply adds a constant
term to the nonlinear problem (3.77).
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As a final comment in this section, we note that the use of the electron flux boundary
condition (3.74) is, in effect, a type of sheath model since it attempts to incorporate the
potential drop across the sheath even if the sheath is entirely contained in the boundary cell.
If, on the other hand, the sheath is resolved by the grid, the predicted boundary flux tends to
the correct limit ¯v(kTe)/4 as|φ−φb| tends to zero in the exponential factor. This behavior
is critical when the Cartesian grid algorithm described in this paper is used as a refinement
level integrator in a locally refined grid algorithm as described in the Introduction. In
particular, it is important to at least have a reasonable prediction of the electron flux during
the integration of the coarser, under-resolved levels so that a smaller correction is required
from the fine grid integration.

3.4. Timestep Restrictions

The implicit treatment of the electron drift flux in (3.77) allows us to exceed the very
restrictive dielectric relaxation timestep limit. The dielectric relaxation time is

τdielectric= νen
/
ω2

p,

whereνen is the electron neutral collision frequency andωp is the plasma frequency. For
parameters such as in Table II,τdielectric can be as small as 10−15 s. The explicit nature of
the electron advection in our time splitting limits us to conditional stability, however. It was
our expectation that we would be limited by the Courant condition, based on the electron
drift velocity, i.e.,

1t ≤ min

(
1x

µ|Ex| ,
1y

µ|Ey|
)
. (3.80)

Experience with our code and a linearized stability analysis [17] have confirmed this expec-
tation. This same analysis suggests ways in which larger timesteps may be used, but to the
detriment of spatial accuracy. As will be shown in an example in the following section, the
timestep restriction (3.80) is typically more severe than the corresponding Courant limits
for the integration of the ion species, and it is therefore the primary control in timestep
selection. The inclusion of rf-biasing at the problem-boundary can further restrict the size
of timesteps in order to resolve the resulting variations.

4. RESULTS

In this section, we present some numerical results obtained using an implementation of
the algorithm described above.

4.1. Convergence Studies

To investigate the convergence of the numerical algorithm described in Section 3, we per-
formed a series of calculations with varying spatial grid sizes. An atomic hydrogen plasma
was assumed with a constant ion and neutral temperature of 0.05 ev and neutral number
density of 1021 m−3. The ion-neutral collision cross section wasσin= 5.0× 10−15 cm2,
and the corresponding frequency was computed using (3.21). The ionization and electron
elastic collision cross sections were obtained from analytic fits to atomic physics data [15],
which resulted in the corresponding frequencies plotted in Fig. 2. The ionization energy
loss coefficient wasεej = 13.565 ev.
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FIG. 3. Potential profiles (volts).

We assumed a one-dimensional spatial domain 8 cm in length with a grounded wall at
the left boundary and a symmetry boundary at the right endpoint. Steady-state solutions
were calculated using 8, 16, 32, 64, and 128 cells. The resulting potential, electron den-
sity, electron temperature, ion density, and ion flux are displayed in Figs. 3 through 7,
respectively. Further refinements were prohibitively expensive, as is discussed in the next
section. The inability to refine further makes it difficult to determine the order of the so-
lution convergence, since we are not yet in the asymptotic regime where the higher order
terms are negligible. We are, however, able to see that the solution is indeed converging.
The plots suggest that the convergence is at least superlinear and we expect that it is second
order.

4.2. Computational Complexity

Although the implicit treatment of the electron drift flux in (3.66) avoids the dielectric
relaxation timestep restriction, we are still left with a computationally intensive problem,
since many steps are required to integrate the solution to times of interest. In this section we
examine the relevant time scales for a sample problem in order to better understand what
we have accomplished and the limitations of our approach.

Figures 8 and 9 show results for a sample calculation at steady state. Here, an argon
plasma is assumed with a constant ion and neutral temperature of 0.05 ev and a neutral
density of 1021 m−3. The ion-neutral collision cross section isσin= 5.0× 10−15 cm2, and
the ionization and electron elastic collision data is obtained from [7]. The spatial domain
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FIG. 4. Electron density profiles (number per cubic meter).

FIG. 5. Electron temperature profiles (electron volts).
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FIG. 6. Ion density profiles (number per cubic meter).

FIG. 7. Ion flux profiles (number per square meter second).
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FIG. 8. Potential profile for sample calculation.

is an 8-cm square that is grounded along two adjacent sides with symmetry boundary
conditions applied to the other two sides. A 64× 64 spatial grid is imposed.

The timestep restriction (3.80) for the algorithm described in Section 3 is determined by
the mesh size and the peak electron drift velocity. The limit for a purely explicit treatment
would be the dielectric relaxation timestep limit (which is grid independent). Regardless
of the method used to integrate the electrons and potential, we are still bound by the
Courant condition determined by the ion velocity if we use an explicit method for the ion
advection. Therefore, the Courant limit imposed by the ion velocity can be viewed as the
theoretical limit for large timestep selection. In Table III we have tabulated these limiting
timesteps at steady state for this sample problem. The values for the “quasineutral” data
were determined at the center of the spatial domain, and the “sheath” data was extracted
from a cell along the physical boundary. In order to emphasize the difference in timestep
selection for a steady state solution, we have also tabulated the number of timesteps required

TABLE III

Comparison of Computational Complexity for Different Limiting Timesteps

Timestep Number of steps
Factor limiting timestep (seconds) to steady state

Ion Courant condition (quasineutral region) 4.89e-6 102
Ion Courant condition (sheath region) 1.77e-7 2,825

Electron drift velocity Courant condition (quasineutral region) 1.64e-8 30,487
Electron drift velocity Courant condition (sheath region) 2.03e-10 2,463,054

Dielectric relaxation time 2.50e-15 200,000,000,000
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FIG. 9. Electron density profile for sample calculation.

to integrate the plasma system to 500µs. This shows that, despite the removal of the
dielectric relaxation timestep limit, the electron drift timestep limit remains and makes the
calculation of steady state solutions difficult. We are currently working toward removing this
limit as well, and our goal is to push the timestep stability limit to that required for the ion
advection.

Stability is not the only issue, of course. Typical ICP reactors utilize a 13.56 MHz radio
frequency (rf) bias potential on the wafer surface, in order to independently control ion
density and energy flux. Timesteps much smaller than the rf period must be used in order
to accurately resolve the bias effects [16]. In this case, the ion limiting timestep may be
too large because of insufficient temporal accuracy. Even in this case, however, the electron
drift-limiting timestep is smaller than necessary from an accuracy point of view. It is also
possible that transient behavior may be of interest, although we have not explored this
issue.

5. CONCLUSION

We have presented a new numerical method for the solution of a set of plasma fluid
equations similar to those used in modeling semiconductor fabrication processes. In addition
to a careful temporal splitting of the full fluid system, higher-order spatial discretizations
were applied in an effort to reduce the amount of spatial gridding relative to lower order
discretizations. The results of Section 4 clearly demonstrate the need for a more aggressive
gridding strategy near the sheath boundary layer. As mentioned in the Introduction, the
Cartesian grid algorithm presented here can be used as a refinement level integrator in a
locally refined grid algorithm [4].
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